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Abstract

We measure the differential cross section for tt̄ production as a function of
the top production angle cos θt, employing a projection onto the Legendre poly-
nomials to characterize the shape of the cross section. We observe agreement
with the standard model prediction for all except the 1st Legendre moment. The
top forward-backward asymmetry is dominated by the anomalously large 1st
Legendre moment.
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Figure 1: Distribution of cos θt for various physics models

1 Introduction

Top pair production has been observed at CDF and D0 to exhibit a large forward-
backward asymmetry (AFB) that is not predicted by state-of-the-art Standard Model
calculations (Phys. Rev. D 83 (112003) 2011 and Phys. Rev. Lett. 100 (142002) 2008).
The asymmetry is a very simplistic statement about the distribution of the top pro-
duction angle θt (the angle between the incoming proton momentum and the outgoing
top momentum, as measured in the rest frame of the tt̄ system) – equivalent to a 2-bin
histogram. A more sophisticated approach is to investigate the full differential cross
section as a function of cos θt, as this carries more information than AFB alone. Ad-
ditionally, the cos θt differential cross section has the potential to discriminate among
different physics scenarios.

1.1 Theoretical predictions

At leading order in the Standard Model, the process qq̄ → tt̄ proceeds via only a single
s-channel diagram. The differential cross section has the general form dσ/d cos θt =
1+cos2 θt. When the process gg → tt̄ is included, the differential cross section becomes

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD83%2C2011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C100%2C2008
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Figure 2: The distribution of cos θt at the detector level in our data sample. The sig-
nal+background model generally performs well, except for the presence of a forward-
backward asymmetry in the data that is not modeled by our signal MC. Also shown is
the same distribution in the side-band with exactly zero b-tagged jets.

slightly more complicated. NLO contributions also add some perturbations to the tree-
level prediction (see Figure 1).

There are also two broad classes of new physics which have been proposed to ac-
count for the observed AFB. s-channel models contain a new axial, colored vector
boson (axigluon) and produce the AFB via interference effects between the parity-even
(scattering via a SM gluon) and parity-odd (scattering via an axigluon) final states.
t-channel models contain a new neutral flavor-changing boson which produces the AFB

by flavor-changing incoming up (or down) quarks into top quarks, which then scat-
ter into the forward Rutherford peak. The s-channel models add a term to the SM
that is linear in cos θt, whereas the the t-channel models add a term that goes like
1/t̂ ∼ 1/(1− cos θt) (see Phys. Rev. D 83 (114027) 2011). Thus the s-channel models
exhibit a deviation from the SM that is a deficit in the backward region that smoothly
becomes an excess in the forward region. t-channel models produce a large excess in
the very forward region, but relatively little deviation from the SM throughout the
rest of the range of cos θt. See Figure 1 for LO and NLO SM calculations as well as
benchmark models for both new physics scenarios.

2 Event selection and modeling

We utilize almost the same event selection, signal model, and background model as the
lepton+jets AFB measurement, documented in arXiv:1211.1003. The only change in
the event selection is to add a sample of events with three tight and at least one loose
jet. The only change in the signal model is to use a new Powheg Monte Carlo sample
that was generated using the luminosity profile of the entirety of Run II. From the full
CDF Run II data set after data-quality requirements, totalling 9.4/fb, we require

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD83%2C2011
http://arxiv.org/abs/1211.1003
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Figure 3: The distribution of cos θt at the detector level separately for positive and
negative leptons, and for electrons and muons. The data is well-modeled, and each
subset of the data still displays a forward-backward asymmetry that is not present in the
MC.

• exactly one well-reconstructed lepton with pT > 20 GeV/c,

• /ET > 20 GeV,

• at least three tight jets with ET > 20 GeV and |η| < 2.0,

• at least four total jets, where loose jets have a relaxed ET requirement of only
12 GeV,

• HT > 220 GeV,

• and at least one jet must be b-tagged.

Extensive validation of the data sample and signal and background model has been
performed in the preceding analysis (arXiv:1211.1003), and we do not repeat it here.
Because we are also studying a new variable (cos θt) that was not previously addressed,
Figures 2 and 3 check the modeling of cos θt. We also check the modeling of mtt̄, the

http://arxiv.org/abs/1211.1003
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Figure 4: The distribution of various kinematic quantities. The modeling of our dataset
is generally quite good.

CDF Run II preliminary 9.4/fb ≥ 4 jets

W+HF 481± 178
W+LF 201± 72
Non-W 207± 86
Single top 67± 6
Diboson 36± 4
Z+jets 34± 5

Total background 1026± 210
tt̄ (7.4 pb) 2750± 427

Total prediction 3776± 476

Data 3864

Table 1: Predicted rates for the signal and the backgrounds, observed event count
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Figure 5: The shapes and formulas of the first six Legendre polynomials. The integral of
every polynomial except for ` = 0 is zero, and the even polynomials are symmetric while
the odd polynomials are anti-symmetric.

J = 1 J = anything

Figure 6: The Born diagram in the standard model proceeds only with a total angular
momentum J = 1, while the box diagram, with a multi-particle intermediate state, may
proceed with any angular momentum.

leading jet ET , the transverse momentum of the charged lepton, and the kinematic
reconstruction χ2 in Figure 4. The number of events that we expect from signal and
background and the number of events that we observe are given in table 1.

3 Legendre moments

The Legendre polynomials (and the spherical harmonics) appear frequently in discus-
sion of angular distributions, and we will employ them in this analysis to describe
the shape of the cos θt distribution. This technique has also been employed in nuclear
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and diffractive measurements in the past. Our measurement is of the first 9 Legendre
moments (the coefficients of the first 9 Legendre polynomials), corrected to the parton
level.

The first six Legendre polynomials are shown in Figure 5. The integral of all of
the polynomials except for P0 is zero. The even-degree polynomials are symmetric
about cos θt = 0, while the odd-degree polynomials are anti-symmetric. Thus, non-
zero Legendre moments of odd degree must be responsible for the AFB. One of the
main thrusts of this analysis is to determine what combination of odd-degree moments
are responsible for the AFB.

The 1959 paper by Jacob and Wick (Ann. Phys. (NY) 7 (4) 404-428) explores the
general theory of 2 → 2 scattering of particles with mass and spin. For a general,
unpolarized differential cross section, all of the angular dependence is entirely and
very naturally described by the Legendre polynomials. The Legendre moments are
determined by a sum over the helicities of the incoming and outgoing particles, two
sums over total angular momentum states, the elements of the S matrix as a function of
total angular momentum, helicity, and center of mass energy, and the Clebsch-Gordan
coefficients.

3.1 Theoretical predictions of moments

This formalism allows us to connect the Legendre moments back to intuitively compre-
hensible physics. The only SM tree-level diagram for qq̄ → tt̄ is an s-channel diagram,
and so only proceeds with a total angular momentum equal to the spin of the interme-
diate gluon, J = s = 1. Therefore, at tree-level in the SM, we should expect (via the
Clebsch-Gordan coefficients) a contribution to the 0th, 1st, and 2nd Legendre moments
(|J1 − J2| ≤ ` ≤ J1 + J2). Since the gluon has even parity, and parity is conserved
in SM QCD, we further expect that the 1st Legendre moment is zero, leaving us with
non-zero moments at ` = 0 and 2. In other, non-s-channel diagrams, any angular
momentum is allowed, and so these diagrams, such as t-channel exchange or the QCD
box diagram, produce contributions to all the Legendre moments from ` = 0 to ∞.

We explore four different models in this formalism. The predicted parton-level
Legendre moments are shown in Figure 7. Because we are only interested in the shape
of the differential cross section and not in the total cross section, we have normalized
all of the predictions so that the zeroth moment, a0 = 1.

The first model is the LO SM QCD calculation of Pythia. In this model, as dis-
cussed, we observe a large a0 and a2, but a1 is zero. We also see some small contribution
to a4, a6, and a8. This is due to the inclusion of the gg → tt̄ process, which includes a
t-channel diagram.

Second is a NLO SM calculation. This is a dedicated computation performed by
Bernreuther and Si (Phys. Rev. D 86 (034026) 2012 and private communication),
which includes the full Standard Model (QCD, QED, weak) at next-to-leading order.
As the box diagrams are now included, we pick up a correction to all the moments,

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C7%2C404-428
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD86%2C2012
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Figure 7: The Legendre moments for several physics scenarios.

including non-zero contributions to the odd moments. Details on this model are ahead
in section 3.1.1.

The s-channel model we use is generated by MadGraph at tree-level, with an ax-
igluon added (mG′ = 2 TeV/c2 and coupling strength to quarks g = 3/2, where the
coupling to top quarks is opposite the coupling to all other quarks). As expected, this
adds a linear term to the Pythia calculation, which becomes a deviation in the 1st
moment alone. This model has been explored thoroughly in previous analyses (called
“Octet A”, see arXiv:1211.1003), and does a very good job of reproducing all kinds
of kinematic distributions, as well as reproducing the total inclusive AFB. Octet A
was in fact specifically tuned to reproduce the inclusive AFB in the 5/fb analysis with-
out adversely affecting the distribution of mtt̄ or the total cross section. It is very
representative of s-channel models with a high-mass axigluon in the general case.

The t-channel model is also generated by MadGraph. It includes a flavor-changing
Z ′ (mZ′ = 200 GeV/c2) with a u–t–Z ′ coupling (g = 0.65). As the added diagram is not
an s-channel diagram, the angular momentum arguments cannot simply be applied, and
we expect a very large contribution to all the Legendre moments under study. While
it is not completely clear whether this model is representative of t-channel models in

http://arxiv.org/abs/1211.1003
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Figure 8: Results of dedicated cos θt calculation compared to Pythia and to Powheg.
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Figure 9: Legendre moments of the dedicated cos θt calculation.

the general case, it is worth noting that t-channel models are already disfavored by the
LHC and Tevatron data.
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3.1.1 NLO (QCD+EWK) calculation

Various papers by Hollik and Pagani (arXiv:1107.2606), Kuhn and Rodrigo (arXiv:1109.6830),
and Manohar and Trott (arXiv:1201.3926) have pointed out that electroweak effects
have a substantial impact on predictions of AFB. By taking NLO QCD diagrams and
replacing various combinations of gluon lines with photon, Z, and W lines, we find
additional contributions to the total cross section, as well as alterations to various
differential cross sections. These effects have been calculated to increase AFB by ap-
proximately 26 % by altering the ∆y differential cross section used in previous AFB

measurements. In order to perform a differential cross section measurement, it is im-
portant to know how the corrections affect the predicted shape of the differential cross
section.

Werner Bernreuther and Zong-Guo Si (Phys. Rev. D 86 (034026) 2012 and private
communication) have performed a dedicated calculation of the cos θt differential cross
section when considering only leading order in QCD, next-to-leading order in QCD,
NLO in QCD plus corrections from weak bosons, and NLO in QCD+EWK (the full
Standard Model). The LO part of this calculation compares well to Pythia, and the
NLO (QCD only) part compares well to Powheg (Figure 8). There is some minor
disagreement in that our Monte Carlos sit in excess of Bernreuther’s calculations at
large |cos θt|. We attribute this to the presence of Pythia parton showering (which
rewrites the momenta of the showered partons to conserve 4-momentum), which is
not present in Bernreuther’s calculations. The Legendre moments of Bernreuther’s
calculations are shown in Figure 9. The principal change between NLO QCD and
NLO QCD+EWK is to the first moment. This calculation, and these moments, are
the benchmark we use throughout the analysis as the Standard Model.

3.2 Estimating the moments

In order to avoid discarding information by coarsely binning our data in a histogram,
we use our data as if it were a histogram with an infinite number of bins. This is
the “empirical measure” of mathematical statistics. In a histogram with an infinite
number of bins, each bin is filled at most once, and almost all bins are not filled at all.
For those bins that are filled, the width of the bin is zero, but the integral over the bin
is one, so the height of the bin is infinite. This is therefore equivalent to viewing the
data as a sum of Dirac delta functions, where there is one delta function at each data
point. This approach also greatly simplifies the problem of estimating the Legendre
moments that correctly describe the distribution of our data.

In order to compute the Legendre moments, a` of a function f(cos θ), one exploits
the orthogonality of the Legendre polynomials,

a` =
2`+ 1

2

∫ 1

−1

d cos θf(cos θ)P`(cos θ). (1)

http://arxiv.org/abs/1107.2606
http://arxiv.org/abs/1109.6830
http://arxiv.org/abs/1201.3926
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD86%2C2012
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Figure 10: The estimated Legendre moments at the detector-level in the CDF data before
background subtraction, and the resulting Legendre series superimposed on a histogram
of the data. The uncertainties on the moments derive from the diagonal of the covariance
matrix (Equation (6)).
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Figure 11: The estimated Legendre moments at the detector-level arising from various
backgrounds mis-reconstructed as tt̄ events.

When the function f(cos θ) is a sum of delta functions,

f(cos θ) =
∑
i

δ(cos θ − cos θi), (2)

this integration becomes trivial:

a` =
2`+ 1

2

∫ 1

−1

d cos θ
∑
i

δ(cos θ − cos θi)P`(cos θ) (3)

=
2`+ 1

2

∑
i

∫ 1

−1

d cos θδ(cos θ − cos θi)P`(cos θ) (4)

=
2`+ 1

2

∑
i

P`(cos θi), (5)
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where the sum is over observed values of cos θ. In words, we look at each event in
our data (indexed by i), and we calculate the value of cos θt for that event. We then
evaluate each Legendre polynomial at that value of cos θt. Then we sum over all the
events in our data to obtain an estimate for the coefficient (Legendre moment) of each
Legendre polynomial.

This estimate technically follows a “compound Poisson” distribution, which is the
distribution that results from summing a Poisson-distributed number of weights, where
the weights follow their own (unspecified) distribution. In our case, a single weight
corresponds to a single event, and so a weight is a vector of Legendre polynomial
output values, P`(cos θi). We sum these vector-valued weights over the set of events,
and the number of events is, of course, Poisson distributed, so we do indeed have a
compound Poisson distribution

We forgo a rigorous exposition of the parameters of this distribution in favor of
a simpler heuristic argument. When we count events, we obtain an estimate of the
total event rate that follows a Poisson distribution. The best estimate of the rate (the
mean of the underlying Poisson distribution) is just the number of events, and the
best estimate of the uncertainty on that rate (the standard deviation of the underlying
Poisson distribution) is the square root of the number of events. As long as the rate
is large enough, the mean and uncertainty are sufficient to describe the distribution
because we are in the regime where a Gaussian approximation is valid.

We can recast this counting experiment in the language of a compound Poisson
distribution. In that case, the weights are scalars and are always one. The best
estimate of the mean of the underlying compound Poisson distribution is the sum of
the weights, and the best estimate of the standard deviation is the square root of
the sum of the squares of the weights, a familiar formula. This pattern of the mean
being estimated by the sum of weights and the variance being estimated by the sum
of squares of weights can be extended to the case where the weights are not always
one, and also to the case where the weights are vectors rather than scalars. The
only change needed to use vector-valued weights is that the square should be replaced
by the tensor product, which yields a covariance matrix rather than a scalar variance.
The Gaussian approximation regime is also then replaced by the multivariate-Gaussian
approximation regime.

In this analysis, we do have sufficient statistics that we are well into the Gaussian
approximation regime, and so the distribution of our estimate of the Legendre moments
is approximately multivariate Gaussian described by a mean as given above from the
sum of weights and a covariance matrix derived from the sum of (tensor product)
squares of weights:

Σ``′ =
∑
i

P`(cos θi) · P`′(cos θi). (6)

This method is used to estimate the Legendre moments for the detector-level mea-
surement of cos θt for the distribution of the events that pass our event selection criteria.
We obtain the distribution of the moments shown in Figure 10. As shown in Figure
10, the statistical noise in the data disproportionately affects the estimation of the
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higher-order moments. Conversely, the higher-order moments express the statistical
fluctuations (local over- and under-densities).

We follow the same method to estimate the Legendre moments of the background
distributions, and then subtract those from the Legendre moments in the data. The
data and background covariances are added together to obtain the background-subtracted
estimate and covariance. The moments describing the backgrounds, both individual
backgrounds and the total background, are shown in Figure 11.

3.3 Correcting to parton level

In order to have a useful measurement that can be directly compared to theory and
to other experiments, we must correct our results for the effects of mismeasurement,
misreconstruction, and inefficiencies. In general, the detector-level differential cross
section can be related to the parton-level differential cross section by a convolution,

fdet(cos θdet) =

∫ 1

−1

d cos θpartK(cos θdet, cos θpart)fpart(cos θpart), (7)

where K is a transfer function that expresses the probability that an event with a given
θpart will be observed with a given θdet. Naturally if the integral of K over detector-level
values, ∫ 1

−1

d cos θdetK(cos θdet, cos θpart) = Pr(cos θpart), (8)

is less than one, that expresses the probability that such a parton level event will be
observed at all.

In order to estimate the parton-level result, we must estimate the transfer function
K and then deconvolve the detector-level result. We estimate the transfer function
using the fully-simulated MC, in which we know both θdet and θpart for every selected
event, and we know whether each generated event was accepted, allowing us to estimate
both detector smearing and acceptance effects. So, using the same “empirical measure”
trick as before,

K(cos θdet, cos θpart) ≡
1

fgen(cos θpart)

∑
i

δ(cos θdet − cos θdet,i) · δ(cos θpart − cos θpart,i),

(9)
where fgen(cos θpart) is the generator-level distribution before any acceptance effects.

In general, deconvolution of continuous functions is intractable. However, by ex-
ploiting the Legendre polynomials, we are able to discretize this particular deconvolu-
tion. After converting the convolution into the Legendre moment basis, we have

adet
` =

2`+ 1

2

∑
m

K`ma
part
m , (10)

which we can easily solve with simple matrix inversion. The detector-level covariance,
Equation (6) is propagated through the matrix multiplication in the usual fashion, by
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multiplying the unfold matrix to both left and right of the covariance matrix. The re-
sulting statistical error estimation is tested using pseudoexperiment pulls, which follow
a χ2 distribution with the expected number of degrees of freedom. The χ2 is actually
a “Mahalanobis distance”, which is a χ2 in the presence of non-zero correlations,

χ2 = (a` − â`)C−1(a` − â`), (11)

where a` is the expected distribution, â` is the distribution resulting from the pseu-
doexperiment, and C−1 is the inverse of the covariance matrix estimated from the
pseudoexperiment.

In most analyses involving an unfold to the parton level, this discretization is ac-
complished by binning the data and the transfer function into histograms. The result-
ing transfer matrix is typically numerically close to a singular matrix and therefore
inversion leads to grossly magnified error bars. In order to control this problem, reg-
ularization is introduced via the assumption that the correct parton-level differential
cross section is smooth (as in Nucl. Instrum. Meth. A372 (469-481) 1996). However,
in the case of the Legendre moment unfold, the transfer matrix is well-conditioned,
and simple inversion is sufficient. We do not apply any regularization in our Legendre
moment unfold.

We also note that these techniques can be applied to a similar measurement at
the LHC, substituting the direction of the longitudinal boost of the tt̄ system for the
proton direction.

4 Systematic uncertainties

We consider two categories of systematic uncertainty. Background systematics affect
the rate or the shape of the background predictions. Signal systematics affect the un-
folding matrix. In order to evaluate the effect of each source of systematic uncertainty,
we first alter either the background prediction or the unfolding matrix, and then we
re-do the background subtraction and unfold. This provides us with a new set of mea-
sured, parton-level Legendre moments, avaried

` . We compare these varied moments to
an appropriate nominal set of moments anominal

` , and obtain a vector of shifts in the
moments due to that source of systematic uncertainty,

δ` = avaried
` − anominal

` . (12)

These shifts represent an uncertainty on the unfolded moments which has 100 % corre-
lation across all the moments. As a result, we produce a covariance matrix with 100 %
correlation by taking the tensor product of the vector of shifts with itself,

Σ`m = δ` · δm. (13)

In this fashion, we make covariance matrices representing each of the sources of sys-
tematic uncertainty, and sum them all up with the statistical-only covariance matrix

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUIMA%2CA372%2C1996
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Figure 12: The size of each systematic, and of the total systematic uncertainty, relative
to the statistical uncertainty.

to produce a full covariance matrix completely describing the uncertainty on our mea-
surement.

We consider systematic uncertainties due to the uncertainty on the predicted back-
ground rates and shapes, on jet energy measurements, in the modeling of hadronization,
color reconnection, and initial- and final-state radation, and on the parton distribution
functions of the proton. The sum of all the systematics is shown in Figure 12. We are
statistics-limited in our measurement of all of the Legendre moments except for a2.

5 Results

We observe (Figure 13 and Table 2) that the Legendre moments agree well with the
NLO SM prediction except for the 1st moment. The first moment is anomalously large.
Because no other odd moments are anomalously large, the first moment is the primary
contributor to the AFB. While the SM calculation is still in flux as various theorists
are working on new calculations, the 1st moment currently sits 2.1σ from the central
NLO SM prediction (Figure 15).
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Figure 13: Measured Legendre moments in CDF Run II data, with statistical and sys-
tematic uncertainties, compared to the predictions of four different models. Uncertainties
are highly correlated. The band around the NLO SM prediction is the result of varying
the scale from mt/2 to 2mt, with mt as the central prediction.

While previous analyses measured AFB, which is a blanket statement about the
totality of the anti-symmetric portions of the differential cross section, this is the first
analysis to break down those anti-symmetric terms into some sort of component parts,
which allows us to make much stronger statements about the underlying physics. Ad-
ditionally, this is the first analysis to measure the symmetric portions of the differential
cross section at all. This measurement will help to constrain both models of new physics
and new calculations of the Standard Model, and will hopefully help to push the state
of the art in high-scale QCD calculations forward.

Figure 16 shows that the AFB is dominated by the first moment. The other moments
contribute only negligibly to the AFB. The AFB produced by the non-linear terms is
totally consistent with the SM prediction, but of course, the AFB produced by the
linear term is well in excess of the SM.

Since these observations are fully corrected to the parton level, they are directly
comparable to theory and to other experiments. The proper way to compare them is via
the Mahalanobis distance discussed above. This simple test statistic can be computed
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CDF Run II Preliminary
∫
L = 9.4/fb

Data (stat+syst) NLO (QCD+EWK)
Legendre degree (l) Legendre moment (a`) Legendre moment (a`)

1 0.40± 0.09± 0.08 0.15+0.066
−0.033

2 0.44± 0.14± 0.21 0.28+0.053
−0.030

3 0.11± 0.20± 0.08 0.030+0.014
−0.007

4 0.22± 0.25± 0.11 0.035+0.016
−0.008

5 0.11± 0.32± 0.07 0.0048+0.002
−0.001

6 0.24± 0.39± 0.12 0.0060+0.002
−0.003

7 − 0.15± 0.46± 0.14 −0.0028+0.001
−0.001

8 0.16± 0.56± 0.33 −0.0019+0.0003
−0.0003

Table 2: Measured Legendre moments in CDF Run II data, with statistical and system-
atic uncertainties (which are highly correlated).
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Figure 14: The correlation matrix among the measured moments. Note that each moment
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CDF Run II Preliminary
∫
L = 9.4/fb

1 2 3 4

1 1.47× 10−2 −7.60× 10−4 1.14× 10−2 −2.95× 10−3

2 −7.60× 10−4 6.41× 10−2 8.96× 10−3 3.29× 10−2

3 1.14× 10−2 8.96× 10−3 4.50× 10−2 −8.18× 10−5

4 −2.95× 10−3 3.29× 10−2 −8.18× 10−5 7.72× 10−2

5 6.86× 10−3 −3.70× 10−3 2.72× 10−2 −7.32× 10−4

6 −1.73× 10−3 4.12× 10−3 −4.88× 10−3 4.00× 10−2

7 2.01× 10−3 1.05× 10−2 1.36× 10−2 5.49× 10−3

8 −7.34× 10−3 −4.69× 10−2 −1.33× 10−2 1.13× 10−2

5 6 7 8

1 6.86× 10−3 −1.73× 10−3 2.01× 10−3 −7.34× 10−3

2 −3.70× 10−3 4.12× 10−3 1.05× 10−2 −4.69× 10−2

3 2.72× 10−2 −4.88× 10−3 1.36× 10−2 −1.33× 10−2

4 −7.32× 10−4 4.00× 10−2 5.49× 10−3 1.13× 10−2

5 1.06× 10−1 2.31× 10−3 4.85× 10−2 1.13× 10−2

6 2.31× 10−3 1.63× 10−1 1.42× 10−2 8.81× 10−2

7 4.85× 10−2 1.42× 10−2 2.32× 10−1 −5.45× 10−3

8 1.13× 10−2 8.81× 10−2 −5.45× 10−3 4.17× 10−1

Table 3: The covariance matrix describing the uncertainty on the measured parton-level
moments. This matrix may be inverted to calculate a χ2 statistic with 8 degrees of
freedom that will allow future theoretical calculations to be compared directly to this
measurement.

using only the predicted moments, the observed moments, and the estimated covariance
matrix (Table 3). It follows a χ2 distribution with 8 degrees of freedom.

One application of this Mahalanobis distance is to make assumptions about the
values of some of the moments. After noting that a1 is the only moment in disagreement
with the SM prediction, we can obtain a more precise, but more model-dependent,
measurement of a1 by explicitly assuming that a2 through a8 are as predicted by the
Standard Model within the scale variation uncertainties. We combine this assumption
with our measurement by minimizing a joint χ2 (the BLUE method). This gives a
best-fit value

a1 = 0.390± 0.108, (14)

which constitutes a reduction in uncertainty of about 10 %, and a shift in the central
value of only 2.5 %.

The axigluon models, as noted, differ from the Standard Model principally by the
addition of a term which is linear in cos θt. The coefficient of that term is determined by
a combination of the axigluon mass, width, and couplings. As equation (14) is likely the



19

1 2 3 4 5 6 7 8
Legendre degree 

0.5

0.0

0.5

1.0

1.5

2.0

2.5

D
e
v
ia

ti
o
n
 f

ro
m

 N
LO

 (
)

tt + jetsCDF Run II Preliminary L=9.4/fb

Figure 15: Deviation of the observed Legendre moments from the NLO SM prediction
with scale mt, divided by the measurement uncertainty on each moment.
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Figure 16: The contribution of each moment to the AFB, and the AFB resulting from the
linear term (first moment) and all the other, non-linear, terms combined.

best measurement currently possible of the linear term in the differential cross section,
it could be used to estimate the parameters of an axigluon model. One could take
the mass-dependent measurement of AFB from arXiv:1211.1003 and assume that, as

http://arxiv.org/abs/1211.1003
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Figure 17: Integrating the Legendre series over finite-width bins gives the fraction of
cross section in each bin of cos θt. Uncertainties are highly correlated and are dominated
by the large uncertainties on the higher-order moments.
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Figure 18: We introduce the assumption that the NLO SM correctly predicts moments
a2 – a8, and integrate the resulting Legendre series over bins again.

in the inclusive case, the AFB was entirely due to a linear term, and therefore have
a mass-dependent linear coefficient, which should be sufficient to indirectly determine
what axigluon masses, widths, and couplings are allowed and/or favored by the CDF
data.

We also integrate the Legendre series resulting from the observed Legendre moments
over the width of several finite-sized bins in cos θt both before (Figure 17) and after
(Figure 18) introducing the additional assumptions leading to equation (14). Since
we are not attempting to measure the total cross section at all, we leave the integral
scaled to unity, so this gives the fraction of measured cross section falling into each
bin in cos θt. We chose 10 bins because we measure 8 moments, and 10 is a nice,
round number. Of course, the uncertainties are still highly correlated, and the size of
the uncertainties is largely due to the large uncertainty on the higher-order Legendre
moments.



21

6 Conclusion

We have measured the differential cross section as a function of the production angle,
cos θt, using the coefficients of the Legendre polynomials to describe its shape. We
observe an anomalously large first moment, a1 = 0.40 ± 0.09(stat) ± 0.08(syst). This
corresponds to an anomalously large term in the differential cross section. All other
measured moments are in good agreement with the prediction of the Standard Model
at next-to-leading order. This excess first moment is sufficient to explain the excess
forward-backward asymmetry; other measured moments contribute only negligibly to
the AFB.
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